
 

 



Head First Python
THIRD EDITION

A Learner’s Guide to the Fundamentals of Python
Programming, A Brain-Friendly Guide

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

Paul Barry



Head First Python
by Paul Barry

Copyright © 2023 Paul Barry. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Suzanne McQuade

Development Editor: Melissa Potter

Production Editor: Beth Kelly

Copyeditor: FILL IN COPYEDITOR

Proofreader: FILL IN PROOFREADER

Indexer: FILL IN INDEXER

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

August 2023: Third Edition

Revision History for the Early Release

http://oreilly.com/


2023-02-08: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492051299 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Head
First Python, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not
represent the publisher’s views. While the publisher and the author have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all
responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-492-05122-0

[FILL IN]

http://oreilly.com/catalog/errata.csp?isbn=9781492051299


Preface

Install the latest Python 3
What you do here depends on the platform you’re running, which is
assumed to be one of Windows, macOS, or Linux.

The good news is that all three platforms run that latest Python, release
3.10. There’s no bad news.

If you are already running release 3.10 or later, move to the next page –
you’re ready. If you haven’t already installed Python or are using an older
version, select the paragraph below which applies to you, and read on.

Installing on Windows
The wonderful Python folk at Microsoft work hard to ensure the most-
recent release of Python is always available to you via the Windows Store
application. Open the Store, search for “Python”, select the most-recent
version, then click the Get button. Watch patiently while the progress
indicator moves from zero to 100% then, once the install completes, move
to the next page – you’re ready.

Installing on macOS
The latest Macs ship with older, out-of-date releases of Python. Don’t use
these. Instead, head over to Python’s home on the web,
https://www.python.org/, then click on the “Downloads” option. The latest
release of Python 3 should being to download, as the Python site is smart

https://www.python.org/


enough to spot you’re connecting from a Mac. Once the download
completes, run the installer that’s waiting for you in your Downloads folder.
Click the Next button until there are no more Next buttons to click then,
when the install is complete, move to the next page – you’re ready.

NOTE
There’s no need to remove the older pre-installed releases of Python which come
with your Mac. This install will supersede them.

Installing on Linux
The Head First Coders are a rag-tag team of techies whose job is to keep
the Head First Authors on the straight and narrow (no mean feat). The
coders love Linux and the Ubuntu distribution, so that’s discussed here.

It should come as no surprise that the latest Ubuntu comes with Python 3
installed and up-to-date. If this is the case, cool, you’re all set. If you are
using a Linux distribution other than Ubuntu, use your system’s package
manager to install Python 10 (or later) into your Linux system. Once done,
move to the next page – you’re ready.

Let’s complete your install with two things: a required back-end
dependency, as well as a modern, Python-aware text editor.

Python on its own is not enough
In order to explore, experiment, and learn about Python, you need to install
a runtime back-end called Jupyter into your Python. As you’ll see in a
moment, doing so is straightforward.

When it comes to creating Python code, you can use just about any
programmer’s editor, but we’re recommending you use a specific one when
working through this book’s material: Microsoft’s Visual Studio Code,
known the world over as VS Code.





Install the latest Jupyter Notebook back-end

NOTE
Don’t worry, you’ll learn all about what this is used for soon!

Regardless of the operating system you’re running, make sure you’re
connected to the Internet, open a Terminal window, then type:

python3 -m pip install jupyter

A veritable slew of status messages whiz by on screen. If you are seeing a
message near the end stating everything is “Successfully installed”, then
you’re golden. If not, check the Jupyter docs and try again.

Install the latest release of VS Code
Grab your favorite browser and surf on over to the VS Code download
page:

https://code.visualstudio.com/Download

NOTE
Their are alternatives to VS Code, but – in our view – VS Code is hard to beat when it
comes to this book’s material. And, no, we are *not* part of some global conspiracy to
promote Microsoft products!!

Pick the download which matches your environment, then wait for the
download to complete. Follow the instructions from the site to install VS

https://code.visualstudio.com/Download


Code, then flip the page to learn how to complete your VS Code setup.

Configure VS Code to your taste
Go ahead and run VS Code for the first time. From the menu, select the
File, then Preferences, then Settings to access the editor’s settings
preferences.

You should see something like this:

NOTE
On the Mac, start with the “Code” menu.



Until you become familiar with VS Code, you may wish to configure your
editor to match the settings preferred by the Head First Coders. Here are
the settings used in this book:



Add 2 required extensions to VS Code
Whereas you are not obliged to copy the recommended editor setup, you
absolutely have to install two VS Code extensions, namely Python and
Jupyter.

When you are done adjusting your preferred editor settings, close the
Settings tab by clicking the X. Then, to search for, select, and install
extensions, click on the Extensions icon to the left of the main VS Code
screen:





VS Code’s Python support is state-of-the-art
Installing the Python and Jupyter extensions actually results in a few
additional VS Code extension installations, as shown here:



These additional extensions enhance VS Code’s support for Python and
Jupyter over and above what’s included in the standard extensions.
Although you don’t need to know what these extra extensions do (for now),
know this: They help turn VS Code into a supercharged Python editor.

With Python 3, Jupyter, and VS Code installed, you’re all set!

GEEK NOTE

Throughout this book you’ll encounter technical call-out boxes like
this. These Geek Note boxes are used to delve into a specific topic in a
bit more detail than we’d normally do in the main text. Don’t panic if
the material in these boxes throws you off your game. They are
designed to appease your curious inner nerd. You can safely (and
without guilt) skip any Geek Note on a first-reading.

NOTE
Yes, this is a Geek Note about Geek Notes (and we’ll not be having any recusrion
jokes, thank you).



Why Python?: Similar But Different

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the Introduction of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at mpotter@oreilly.com.



Existing programmers will recognise many pieces of Python. Python
starts counting from zero. If you’ve programmed before, that’s familiar.
Same goes for if statements, loops, functions, modules, and classes –
they’re all here. But, Python does do some things in a strange way. For
instance, statements typically end when a line ends, and code blocks (called
suites) are signified via whitespace not curly-braces. This is, at first,
well… very weird. Of course, this being Head First, you’re going to jump
right into all of this by looking at code, running code, and experimenting
with code. Look, run, and experiment are cool words, as are quirky, friendly,
clean, powerful, popular, easy, and fun, and every one of those words



describe Python. Easy and fun?!?! What’s going on here? Isn’t
programming supposed to be hard?





Cool, ‘cause there’s no time to waste.

We want the fun to start right away.

Additionally, we want you to confidently answer a burning question when
you get to the end of this chapter. Specifically, this question: Why Python?

So, grab your pencil – yes, a pencil – and meet us at the top of the next
page!



LOOK HOW EASY IT IS TO READ PYTHON
You don’t know Python yet, but we bet you can make some pretty good
guesses about how Python code works. Take a look at each line of code
below and note down what you think it does. We’ve done the first one
for you to get you started. Don’t worry if you don’t understand all of
this code yet – the answers are on the next page, so feel free to take a
sneaky peek if you get stuck.





LOOK HOW EASY IT IS TO READ PYTHON
You don’t know Python yet, but we bet you could make some pretty
good guesses about how Python code works. You were to note down
what you thought each line of code below did. We did the first one for
you to get you started. How do your notes compare to ours?





THERE ARE NO DUMB QUESTIONS
Q: So Python uses the standard square bracket notation?

A: Yes, and no. Yes, the square bracket notation is similar in Python to
how it is used in other programming languages. And, no, it’s not what
you’d call “standard” as Python extends what’s possible with the
notation in some rather cool ways. (You’ll learn how soon).

Q: Doesn’t Python call arrays by the name “list”?

A: Eh… yes, and no. Yes, Python uses the more generic name “list” to
refer to the suit, faces, and numbered variable from the last example.
And, no, lists are array-like, but not arrays. If you need an array, there’s
a library you can import called array which provides them.

Q: Seriously? There’s no built-in array-type in Python?

A: No, there’s the list, which is waaaay cooler. And, as we said in the
last answer, the array library is just an import away should you really
need it. But, we’ll bet the farm you’ll rarely need to use the array
library once you see what lists can do.



Wrong. This code runs as-is.

In Python, variables are not pre-declared with typing information.

If this is the first time you’ve come across this, you may well regard this as
somewhat questionable. But you should resist the urge to run for the hills,



screaming.

Here’s what happens: When a variable is first used in Python code, it must
be assigned a value, and that value (obviously) has a type, such as a
number, a string, a list, or whatever. Think of it this way: Variables have no
typing information associated with them, but the value they refer to does.

So… the code on the last page is ready to run, and it turns out it’s easy to
run, too.

Getting ready to run your code
There’s a tiny bit of house-keeping to work through before you get going.

To help keep things organized, let’s create a folder on your computer called
Learning. You can put this folder anywhere on your hard-drive, so long as
you remember where you put it, as you are going to use it all the time.

With your Learning folder created, start VS Code.



RELAX

Don’t panic if you haven’t installed VS Code.

That’s no biggie. Pop back to this book’s Intro and work through the
pages beginning at Install the latest Python 3. You’ll find the
instructions to install VS Code and some required extensions there.

Do this now, then pop back here when you’re ready. We’ll wait…



Each time you work with VS Code in this book, you’ll open your Learning
folder as needed. Do this now before continuing.

You’ll use VS Code for everything
Whether you’re creating a text file for your Python code, running Python
code from a command prompt, running Python code line-by-line at a REPL,
or debugging your Python code, you can do all of these activities within VS
Code.



REPL stands for “read-eval-print loop”.

Pronounced “rep-ell”, a REPL is an interactive environment which
supports the execution of a single line of code, displays it’s resulting output
on screen, then iterates.

Your code is Read from an interactive prompt, then Evaluated. Any output
is then Printed to the screen, before the system Loops back to get your next



line of code, then the process repeats. Ergo: REPL.

Python, Jupyter, and VS Code
Python has a basic built-in REPL which VS Code exposes to you and
enhances through it’s extensions system. Remember that Jupyter extension
you installed right after you installed VS Code in the Intro? Jupyter is a
REPL, and then some.

It’s useful to think of VS Code’s Jupyter extension as a supercharged REPL,
which you can’t really appreciate until you experience it in action. But,
don’t worry, you will soon!

Before you do, note the following: Jupyter can create as many REPLs as
you wish. Further, REPLs are not called “REPL” in the Jupyter universe. A
Jupyter REPL is called a notebook.





Now that you’ve seen how easy Python code is to read, and you
understand what a REPL is, it’s time to run some code!

Preparing for your first REPL experience
OK. You’re running VS Code, and you’ve opened your Learning folder.
Let’s create a new notebook by first selecting the File menu, then selecting
the New File… menu option. You’ll be presented with three choices:



VS Code creates and opens a new, untitled notebook called Untitled-
1.ipynb, which appears on screen.



Drum roll, please. You’re now ready to type in and run some Python code.



TEST DRIVE

Your cursor is blinking in that empty code cell. Go ahead and type in
the first three lines of code from the card deck example from the start of
this chapter. Here’s the first three lines of code again:

Python code is easy to run!



Press Shift+Enter.

To run a code cell within a Jupyter notebook, press the Shift key together
with the Enter key.

If all is well, three things can happen.

 Your Python code executes (aka the R and E parts of REPL)

Assuming, of course, what you typed is correct Python code. If you
have syntax errors, you’re told and your code does not run to
completion. If your code runs successfully, the code cell is assigned a
numeric identifier.

 If your code produces output, it is displayed on screen (aka the
P part of REPL)

You’ll see examples of this behavior in a little bit. Obviously, if your
code produces no output you’ll see nothing, which is what you’d
expect with the cell shown above. That code defines three variables, so
there’s no output produced when this code runs.



 The notebook focus moves (aka the L part of REPL)

When Shift+Enter works, the focus moves to the next cell in your
notebook, assuming there is one. If there is no more cells in your
notebook, a new empty code cell is created and the focus moves to it.
This is what happens when you press Shift+Enter now. Go ahead: do
it!

Pressing Shift+Enter runs your code cell





EXERCISE

Your notebook is waiting for more code. Let’s get in a little bit of
practice using VS Code by adding the following code to your notebook:

1. Type import random into your waiting cell, then press
Shift+Enter.

2. Type the code for the draw function into the next cell, then press
Shift+Enter to run that cell, too. Here’s a copy of the draw
function’s code from earlier:



EXERCISE SOLUTION

You were asked to add more code to your notebook. Here’s what your
notebook should look like now:





You’ve yet to invoke draw.

Cell #3 defines your function but doesn’t invoke it. This explains why cell
#3 (as well as the other two) show no output: The definition of variables
produces no output (cell #1) nor does the importation of a library (cell #2).



TEST DRIVE

Let’s draw some cards from your card deck.

In your empty code cell, type draw() then press Shift+Enter.

We did this in three cells to confirm the code is producing random
cards, and here’s what we saw:



Python code really is easy to run
Hopefully, you now agree. There are of course other ways to run Python
code, and you’ll learn about them as you work through this book. However,
using VS Code with the Jupyter extension is – in our view – the perfect way
to read, run, experiment, and play with Python code when first learning the



language. So get ready to spend a lot of time in Jupyter notebooks within
VS Code.

Before moving on, take a moment to select File then Save from the VS
Code menu to save your notebook under the name Cards.ipynb.

NOTE
Do this now!



THERE ARE NO DUMB QUESTIONS
Q: The output from the draw function looks a little strange. What’s
the deal with those parens?

A: Technically, the draw function is returning a tuple, which is an
immutable data structure built into Python. Don’t worry what all this
means for now, as you’ll be learning lots about how Python works with
data structures later in this book. And, yes, the output from the draw
function could look more human-friendly, but at this stage in this book
we’re not interested in making your output look nice. Rather we’re
concentrating on showing you running Python code.

Q: “.ipynb” as a file extension? Kinda awkward, isn’t it?

A: It stands for “Interactive PYthon NoteBook”, which is the format
used by Jupyter to store your notebooks. Despite the weird filename
extension, notebooks are cool in that they are text files based on a
standard JSON format. You can treat an ipynb file like any other text
file. In fact, if you know someone who can run a Jupyter notebook, you
can share your ipynb file with them (perhaps including it as an email
attachment?). Upon receipt, they can load your notebook into their
Jupyter and work with their copy of your notebook as needed.

Q: What’s the significance of those code cell numbers?

A: They are there mainly as a convenience, in that they are a visual clue
as to what order your code cells executed in. They have nothing to do
with Python. As such, and going forward, we’ll only show the cell
numbers when it makes sense to do so, as our goal is to get you to
concentrate on the Python we’re showing you, not the ins-and-outs of
VS Code and Jupyter. For now, if you understand why you have to
press Shift+Enter, then you’re good to go.

Q: I just opened my Cards. ipynb file in VS Code and it’s saved
everything, including all the output! Shouldn’t it just save my code?



A: No. Jupyter’s format saves all the information from your notebook,
including any generated output. This is why notebooks are saved as
JSON. You can control what get’s saved, so if you don’t want the output
saved, you don’t have to save it. Having said, code saved without
output is still saved as JSON, so things will look weird if you open an
ipynb file in an editor which doesn’t understand Jupyter, as you’ll see
the raw notebook JSON (which can look a tad intimidating).

Q: I have a Data Scientist friend and when I showed them my VS
Code setup eyes were raised, and I was asked why I’m not running
Jupyter inside my browser, like everyone else? What’s the story?

A: Yes, our Data Scientist friends also love to run their notebooks in the
browser-based Jupyter Notebook and Jupyter Lab environments (and
we like both of those tools, too, BTW). However, we feel running
notebook’s within VS Code is a “better fit” to the way programmer’s
brains are wired. As you work through this book and gain more
experience with VS Code, you’ll see that the editor also has lots more
to offer over what we’ve shown you so far.

Q: Can I use my VS Code produced notebooks with other Jupyter
tools, for instance, inside a web browser?

A: Yes. If the tool you want to use understands the Jupyter notebook
format, it can use anything produced by VS Code, as VS Code
notebooks are 100% compatible with Jupyter’s JSON standard.

Q: Can I use VS Code to manage my GIT stuff?

A: Yes, but getting into how you do that is beyond the scope of Head
First Python, so you won’t see us using GIT here. Of course, that’s not
to say we don’t use GIT to manage the code in our projects: We do! Oh,
BTW, If you’re looking for an excellent GIT primer, check out Head
First GIT.

Q: Why the funny spelling of Jupyter? Isn’t the planet spelled with
an “i”?



A: Yes, the planet is spelled with an “i”, but the tool is not named after
the planet. Jupyter is named after the three programming languages it
initially supported, namely Julia, Python, and R. That’s why the “py”
letters are included in the name: That’s a reference to Python’s preferred
filename extension for code files, which is .py.

Q: [Coughs] Emmm… Is R a real programming language?

A: Oh, come on, now, let’s not go there. (This is a Python book, after
all).

But, wait! There’s more…
You may already be sold on Python now you’ve seen how easy it is to read
as well as run your Python code. But, you’re not done yet.

For the remainder of this chapter, you are going on a whistle-stop tour of
some of Python’s standout language features.

As this is a Head First book, it’s not enough we tell you what these are, we
want you to experience them. So, in VS Code, close your Cards notebook,
then create a new notebook called WhyPython.ipynb. You’ll work in this
new notebook for the rest of this chapter.

NOTE
To create a new notebook in VS Code, select File, then New File... from the menu.
Choose the third option to create a new, untitled notebook. Perform a File, Save to
change the untitled name to “WhyPython.ipynb”.



Yes. Every… single…word.

We’re only joking. 

The goal for this chapter is to arm you with enough know-how to
confidently answer the question: Why Python? To do that, you’ll be
introduced to Python language features on the pages which follow, albeit
from a high-level.



But, don’t worry: You’ll be returning to all of these features in detail later in
this book. For now, concentrate on understanding the gist of what you’re
seeing.

With your new notebook ready in VS Code, get ready to dig in!

Python ships with a rich standard library
The Python Standard Library (PSL) is the name used to refer to a large
collection of Python functions, types, modules, classes, and packages
bundled with Python. These are guaranteed to be there once Python is
installed.

When you hear programmers refer to Python as coming with “batteries
included”, they are referring in part to the PSL. There’s a lot to it:
https://docs.python.org/3/library/index.html.

https://docs.python.org/3/library/index.html


In this book, “PSL” is shorthand for the “Python Standard Library”.

No. It’s quite an apt description.

The Python 3 install includes the PSL, which is complete to the point
where, more times than not, you can rely on the features it provides to get a
lot of work done. The thinking is that Python 3 alone is all you’ll need to
get going, which means the standard install of Python 3 works “right out to
the box” without the need for anything extra. Hence, batteries included.

BTW: Python is not a “toy language”



This is a common criticism levelled at Python, in that it is somehow not a
“real” programming language, or some sort of “toy”. If either of these
observations were even remotely true, you wouldn’t expect anyone
anywhere to be using Python for anything useful, let alone relying on
Python to power their business.

The fact is some of the world’s largest websites run Python, some of the
world’s biggest banks, too. And let’s not forget all those legions of data
scientists solving all manner of problems every day with custom Python
code. Python may indeed look different, but this does not mean it can’t get
the job done. Python is fun to use, but this doesn’t mean it’s a toy. Far from
it.



WHO DOES WHAT?
We know you’ve yet to look at the PSL in any great detail but, to give
you a taste of what’s included, we’ve devised a little test. Without
taking a peek at the documentation referred to on the last page, consider
the names of some of the modules from the PSL shown on the left of
this page. Grab your pencil and draw an arrow connecting the module
name to what you think is the correct description on the right. To get
you started, the first one has been done for you. Let’s see how you do
with the rest. Our answers are on the next page.





WHO DOES WHAT? SOLUTION
We know you’ve yet to look at the PSL in any great detail but, to give
you a taste of what’s included, we’ve devised a little test. Without
taking a peek at the documentation referred to earlier, your were to
consider the names of some of the modules from the PSL shown on the
left of this page. Grabbing your pencil, you were to draw an arrow
connecting the module name to what you think is the correct description
on the right. The first one was done for you. Now you can see our
arrows, how did you do?





Yes: There’s a lot going on there.



Recall the goal here is to give you a flavor of what’s in the PSL, not for you
to explore it in any great detail.

You are not expected to know all of this, nor remember what’s on the last
page, although there are three points you should consider.

 You’ve only scratched the surface

The PSL has a lot in it, and what’s on the previous two pages provides
the briefest of glimpses. As you work through this book, we’ll call out
uses of the PSL so you don’t miss any (and you’ll also find resources
in the appendices for further exploring the PSL on your own).

 The PSL represents a large body of tested code which you don’t
have to write, just use As the PSL has existed for decades now, the
modules it contains have been tested to destruction by legions of
Python programmers all over the globe. Consequently, you can use
PSL modules with confidence.

 The PSL is guaranteed to be there, so you can rely on its
modules being available

Other than for some very specific edge cases (such as a tiny embedded
micro-controller providing a minimal Python environment), you can be
sure your code which uses any PSL module will be portable to other
systems which also support the PSL.

Let’s use your latest notebook to take a quick look at two modules from
the PSL.



TEST DRIVE

Let’s see two modules from your recent Who Does What? exercise in
action. In your WhyPython notebook, type the code below into code
cells, remembering to press Shift+Enter to execute the cells one-at-a-
time. First up is a bit of randomness. Let’s face it, everyone loves
random numbers, and the PSL’s random module makes generating
them super easy:

The PSL’s collections module is very popular, and contains a bunch of
containerised data types. A particular favorite is the Counter class
which automates frequency counting:



Only write the code you need
The PSL is an prime example of Python working hard to ensure you only
write new code when you absolutely have to. If a module in the PSL solves
your problem, use it: Resist the urge to code everything from scratch.

The PSL comes packed with powerful built-in functions
As the phrase built-in function is a bit of a mouthful, everyone uses BIF
instead. The BIFs are part of the PSL, and you can use them anywhere in



your code. The full list is here:
https://docs.python.org/3/library/functions.html, and you’ll see a bunch of
BIFs in action in this book. For now, we’ll look at four: len, print, type,
and dir.

“BIF” is shorthand for “builtin function”.

Ha, ha, very funny…

Let’s get one thing straight: When it comes to making jokey references to
popular culture, that’s our department, okay?

Seriously, though, naming can sometimes get a little silly around Python
folk. For a case in point, check out this page’s Geek Note, below.

https://docs.python.org/3/library/functions.html


GEEK NOTE

What’s in a name?

Lots, when it comes to Python, which is not named after a type of
snake! Instead, Python is named in honor of Monty Python’s Flying
Circus, a classic British comedy TV series and movie franchise
featuring John Cleese, Michael Palin, Graham Chapman, Terry
Gilliam, Terry Jones, and Eric Idle. Who knew? For more on the origin
of Python’s name, see: https://docs.python.org/3/faq/general.html#why-
is-it-called-python.

BIFs provide practical, generic functionality
Let’s get to know some BIFs.

If you are working with something in Python which has an associated size,
the len BIF returns its length. Take a string as a for instance. Here’s one,
which you can go ahead and type into your notebook in VS Code
(remember: press Shift+Enter to run the code in your cell):

https://docs.python.org/3/faq/general.html#why-is-it-called-python


Two things happen here: Whatever’s to the right of the assignment operator
(=) is created in Python’s memory as a new object, then a reference to the
object is assigned to the variable name to the left of the assignment
operator.

Go ahead and type the name of your latest variable into your next cell, then
press Shift+Enter again:

No. Not really.



When entering strings you can use either just so long as they match, and
most Python programmers prefer to use double-quotes. That said, the
Python interpreter favors displaying strings with single-quotes, and that’s
what Jupyter is showing you here: The interpreter’s representation of the
string.



EXERCISE

When we stated that we were going to look at four BIFs, we actually
meant you were. The four BIFs we picked – len, print, type, and dir –
see a lot of usage, especially when paired with Python’s various REPL
mechanisms.

Here’s what we’d like you to do. For each of the lines of code shown
below, type the line into it own code cell in your WhyPython notebook,
remembering to press Shift+Enter to run each cell. Then, in the spaces
provided and using your trusty pencil, write down what you think the
BIF is doing. (Our answers are on the next page).







EXERCISE SOLUTION

When we stated that we were going to look at four BIFs, we actually
meant you were. The four BIFs we picked – len, print, type, and dir –
see a lot of usage, especially when paired with REPLs.

Here’s what we asked you to do: For each of the lines of code shown
below, you were to type the line into it own code cell in your
WhyPython notebook, remembering to press Shift+Enter to run each
cell. Then, in the spaces provided and using your trusty pencil, you
were to write down what you thought the BIF is doing.

Here’s what we saw, together with annotations on what’s going on.
Does this match what you think each BIF does?





The print dir combo mambo
Don’t worry. The first time we saw the output from the print dir
combination, we were a little perplexed, too. And… we certainly didn’t
erupt into spontaneous dancing.

The print BIF in this line of code is used to ensure the output from the dir
BIF displays across the screen as opposed to down the screen (as it very
quickly scrolls out of sight).

What’s actually appearing is generated by the dir BIF, which displays the
list of valid attributes associated with the Python object passed as an
argument. In this case, the argument to dir is the msg variable (which the
type BIF just confirmed is a string):



Here’s a simple rule to follow when looking at the output from print dir:
For now, ignore the attributes which begin and end with a double-
underscore. You’ll learn why they exist later in this book, but – for now –
ignore, ignore, ignore!



Getting help with dir’s output
You might not think this to look at it, but you’ll likely use the dir BIF more
than any other BIF when working with any Python REPL, of which Jupyter
is just one example. This is due to dir’s ability to fess-up the list of
attributes associated with any object. Typically, these attributes include a
list of methods which can be applied to the object.

Although it might be tempting (albeit a little bonkers) to randomly execute
any of the methods associated with the msg variable to see what they do, a
more sensible approach is to read the documentation associated with the
method…



We all love searching through the docs, right?

Like most of you, our eyes are also glazing over at the thoughts of this. We
agree with the sentiment here: Who has time to lookup, find, and read
documentation? Thankfully, Python makes the lookup and find bits easy,
thanks to another BIF called help.

There’s built-in functionality everywhere!
Not only do you have the PSL and the BIFs built-in, but – as demonstrated
when you performed the print dir combo on your msg variable – there’s a
ton of functionality packed inside each and every Python object:



In addition to strings, Python has built-in data type support for numbers
which can be either integers (int) or floating point numbers (float).
There’s also the standard boolean data values: True and False.

Although numbers and booleans are also Python objects which you can use
the print dir combo against, this tends to happen less in practice as



numbers and booleans are simple scalar values which are, as a result, well
understood. This is not the case with a string which is a more complicated
beast, as evidenced by the number of built-in methods available to you.
This is also the case with Python’s built-in data structures: list, tuple,
dictionary, and set.

The Big 4: list, tuple, dictionary, and set
Python’s excellent built-in support for data structures is legendary, and is
often cited as the main reason most Python programmers love Python.

As this is your opening chapter, the briefest of overviews is presented here.
You’ll see each of the big 4 data structures in detail later in this book (when
we’re sure you’ll learn to love them, too). For now, return to your
WhyPython notebook, and follow along with the next four Test Drives in VS
Code.



TEST DRIVE

You met a list earlier in the card deck code. Recall the suit variable:





TEST DRIVE

Lists are really useful for lots of reasons, but mostly due to the fact they
can mutate: As your code runs, lists can shrink and grow as needed. If
what you are trying to model with your data does not require mutability,
you may wish to consider using a tuple which – keeping things simple,
for now – can be thought of as a list which cannot mutate.

On the surface, using a tuple instead of a list doesn’t look all that
different.







TEST DRIVE

Lists and tuples are all over Python, but everybody’s favorite built-in
data structure is the dictionary (dict), which is a mapping data
structure associating keys with values. Here’s a simple example which
associates a handful of student names with alphabetic grades.







TEST DRIVE

The last of The Big 4 is the set, which is just like the sets you learned
about in Math class. When a bunch of objects are assigned to a set,
duplicates are removed, and it’s this characteristic which most Python
programmers exploit. Of course, sets can be do so much more.





Python has powerful built-in operators
Like other programming languages, Python comes with a large collection of
operators. There’s the usual suspects, such as ==, >, !=, <, and so on. But,
Python has a few extras which can be incredibly useful, especially when
combined with the built-in data types/structures.

One such operator is in, which performs membership testing. Let’s see in at
work against some of the variables from earlier in this chapter.

The in operator knows all about the built-in data types/structures. The print
BIF, once again, can be put to good use to help you see the in operator



doing its stuff. As you run these fives calls to print in your notebook, note
the absence of any loop code:



THERE ARE NO DUMB QUESTIONS
Q: The suit variable started out as a list, then you assigned a tuple
to it, which surely changed its type, right? Why didn’t Python
complain?

A: On the surface it looks like suit’s type changed, but it didn’t. The
type of the object suit refers to changed. Think of variables in Python
as object references. As a variable in Python can refer to any object of
any type, it follows that the type of the object a variable refers to can
change as your program runs. This is what is meant by “dynamic
typing”, in that the type your variable refers to is bound at run-time, not
compile-time. Some programmer view such an arrangement as evil at
work. Python programmers do not share this view. To keep things
straight in your head, remember that Python variables are object
references which refer to values which themselves have type. There’s a
double look-up here: First, Python looks up the variable’s name then,
second, Python accesses the object the name refers to. (This might
sound absurd, but it works surprisingly well).

Q: Surely there’s more to the big 4 built-in data structures than
what’s presented in those four Test Drives?

A: Of course there is! In fact, knowing when to effectively use the
correct built-in data structure is what often separates the better Python
programmers from the pack. You’ll see lots of uses of every one of the
big 4 in this book and, by the time you’re done, you’ll be wielding all
four of them like a real pro.

Q: What if none of the big 4 built-in data structures fit my needs?
Can I create my own?

A: Yes, you can. But, let’s not get ahead of ourselves here. When the
time comes for you to craft a custom data structure as a 100% perfect fit
for your application needs, we’ll walk you through the process. All
we’ll say now is it’s a class act!



Pretty much, yes.

If you think the PSL is cool, just wait until you learn about PyPI. Flip the
page for a quick intro.

Python’s package ecosystem is to die for
Being not content with what’s already included in the PSL, the Python
community supports a centralised repository of third-party modules,



classes, and packages. It’s called the The Python Package Index and lives
here: https://pypi.org/.

Known as PyPI (and pronounced “pie-pea-eye”), the index is a huge
collection of software. Once you find what you’re looking for, installing is a
breeze, and you’ll get lots of practice installing from PyPI as this book
progresses.

For now, take ten minutes to visit the PyPI site (shown below) and take a
look around.

https://pypi.org/




Emmm… maybe someone needs to lay off the incense, eh?

Seriously, though, when a programming language is named in honor of a
bunch of comedians, it should come as no surprise that things get a little
silly sometimes. This is not a bad thing.

The Python documentation is literally littered (sorry) with references to
Monty Python. Where other documentation favors foo and bar, the Python



docs favor parrots, spam and eggs. Or is it eggs and spam? Anyway, as the
documentation states: you don’t have to like Monty Python to use Python,
but it helps. 

The Python REPL comes with two Easter eggs which demonstrate how
Python programmers sometimes don’t take themselves too seriously, and
also don’t mind when other folk have a bit of fun at their expense. To see
what we mean, return to your WhyPython notebook one last time, and, in
two new code cells, run each of the following lines of code. Enjoy!



It’s still early days on your Python journey, but here’s (for now) why
we think why.

 Python code is easy to read.

 Python code is easy to run.

 Python encourages experimentation and learning via its REPL.

 Python includes the Python Standard Library (PSL).

 The PSL provides practical, powerful, and generic built-in functions
(BIFs).

NOTE
Who can forget the “combo mambo”?

 The PSL has “The Big 4” data structures: lists, tuples, dictionaries,
and sets.

 Python has powerful built-in operators (like “in”).

NOTE
Just think of all the code included in 4 through 8 that you don’t have to write,
maintain, nor test!

 Python has the Python Package Index (PyPI).

 Python is fun!

NOTE
Don’t underestimate the importance of this last one.



The Opening Crossword

Congratulations on making it to the end of your opening chapter, numbered
zero in honor of the fact that Python, like a lot of other programming
languages, starts counting from zero. Before you dive into your next
chapter, take a few minutes to try this crossword puzzle. All of the answers
to the clues are found in this chapter’s pages, and the solution is on the next
page. Enjoy!



Across

2. Like a constant list, immutable.

5. A worldwide repository of Python modules.

6. Basic type for whole numbers.

8. It’s as long as this, a piece of?

10. A powerful little operator, good at finding things.

11. A number with a decimal point.

13. Can be either True or False.



14. Enlightenment, Python-style.

15. 2nd part of the combo mambo.

17. Use together with Shift to run.

18. Like an array, only more.

Down

1. Shorthand for the Python Standard Library.

2. This built-in function tells you what any object is.

3. Displays objects on screen.

4. The big 4’s mapping technology.

7. Built-in function abbreviation.

8. There’s no duplicates here.

9. Brings a library into your code.

12. Size does matter to this function.

16. Read-Eval-Print Loop.

The Opening Crossword Solution



Across

2. Like a constant list, immutable.

5. A worldwide repository of Python modules.

6. Basic type for whole numbers.

8. It’s as long as this, a piece of?

10. A powerful little operator, good at finding things.

11. A number with a decimal point.

13. Can be either True or False.



14. Enlightenment, Python-style.

15. 2nd part of the combo mambo.

17. Use together with Shift to run.

18. Like an array, only more.

Down

1. Shorthand for the Python Standard Library.

2. This built-in function tells you what any object is.

3. Displays objects on screen.

4. The big 4’s mapping technology.

7. Built-in function abbreviation.

8. There’s no duplicates here.

9. Brings a library into your code.

12. Size does matter to this function.

16. Read-Eval-Print Loop.

Just when you thought you were done…
Go grab your scissors, as here’s a handy cut-out chart of the Jupyter
notebook keyboard shortcuts we view as essential. You’ll get to use all of
these are you learn more about Jupyter, and they all work in VS Code. For
now, Shift+Enter is the most important combination:



Notebook key combinations:

 

Shift+Enter Execute the current code cell, then move the focus 
to the next cell (creating a new empty cell when at 
the bottom of the notebook).

Ctrl+Enter Execute the current code cell, but don’t move the 
focus.

Alt+Enter Execute the current code cell, then insert a new 
empty cell below the executed one. Move the focus 
to the new cell.

 

Notebook key sequences:

 

Esc then A Insert a new empty cell above the current cell. 
Move the focus to the new cell.

Esc then B Insert a new empty cell below the current cell. 
Move the focus to the new cell.

 

Other useful notebook key sequences:



 

Esc then C Take a copy of the cell which currently has the 
focus.

Esc then V Paste a previously copied (or cut) cell below the 
currently focused cell.

Esc then X Cut the currently focused cell from the notebook.

Z Undo the last cut (there’s no need to press the ESC 
key here).

 

NOTE
Just as well, as we asked you to take your scissors to what’s on the flip-side!



Chapter 1. Diving in: Hit the
Ground Running!

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 1st chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at mpotter@oreilly.com.



The best way to learn a new language is to write some code. Which is
exactly what you’ll do in this chapter. And if you’re going to write some
code, you’ll need a real problem. As luck would have it, we have one of
those! In this chapter, you’ll start to automate an existing manual process
with Python. Along the way, you’ll be introduced to Python strings,
learning how work, how they are stored in Python’s memory, as well as
how to manipulate them to your heart’s desire. You’ll also (briefly) meet
Python’s list technology, learn how variables work, as well as discover
how to read Python’s error messages without going crazy… all while
solving a real problem with real Python code. Let’s get started!

Once upon a time, there was a swim coach…



A friend of a friend has been in touch. They heard you know how to code,
and they know an underage swim coach they think you can help.

When it comes to monitoring the progress of their swimmers, the Coach in
question does everything manually. During a training session, the Coach
records each swimmers training times on their trusty clipboard then, later at
home, manually types each swimmer’s data into their favorite spreadsheet
program to perform a simple performance analysis.

For now, the analysis is straightforward. The times for the session are
averaged, and a simple bar chart allows for a quick visual check of the
session’s swims. The Coach readily admits to being a computer neophyte,
who is much better at Coaching underage swimmers than “mucking about
with spreadsheets”.



On the face of things, this doesn’t look at all bad. Until, that is, you
consider the Coach has over 60 such sheets to create after each training
session, as swimmers can swim different distances in multiple strokes.
That’s a lot of work, and, as you can imagine, this process is painfully
slow…



Automation is what you do!

You’ve been looking for a project you can cut your Python teeth on, and
this work might just fit the bill.

Let’s think about possible approaches for a moment.



That sounds simple enough, but…

That won’t work. Yes, the Coach could bring a laptop to the pool, but
they’re way too busy running the swim session.

Stopping every minute or so to work at a laptop screen is a non-runner, and
that’s before considering that water, splashes, and laptops don’t mix too



well.

That idea breaks too many rules.

The pool has a strict policy: No photographic nor recording devices on-
deck. Privacy laws forbid any poolside device which can take a photo, so
nobody at any swim session carries a smartphone.

So, using a smartphone is also a no-go.

Fortune decides to smile on you!





As luck would have it, a quick search of the world’s largest online shopping
site uncovers a new device described as an internet-connected digital smart
stopwatch*.

As product names go, it’s a bit of a mouthful, but the smart stopwatch let’s
the Coach record swim times for an identified swimmer, which are then
transferred to the cloud as a CSV file.

As an example of one of these files, here’s the contents of the file which
contains matching data to the spreadsheet page shown for Darius from a
few pages back:

This data looks promising. If you can work out how to process this file, you
can then do the same thing for any number of files which are formatted
similarly.

As always, the big question is: Where do you start?

* You heard it here first.

Cubicle Conversation



Ava: OK, folks, let’s offer some suggestions on how best to process this
data file.

Juan: I guess there are two parts to this, right?

Matt: How so?

Juan: Well, firstly, I think there’s some useful data embedded in the
filename, so that needs to be processed. And, secondly, there’s the timing
data in the file itself, which needs to be extracted, converted, and processed,
too.

Ava: What do you mean by “converted”?

Matt: That was my question, too.

Juan: A value like “1:27.95” represents, I’d imagine, one minute, 27
seconds, and 95 one-hundredths of a second. That needs to be taken into
consideration when working with these values, especially when calculating
averages. So, some sort of value conversion is needed here. Remember, too,
that the data in the file is textual.



Matt: I’ll add “conversion” to the to-do list.

Ava: And I guess the filename needs to be somehow broken apart to get at
the swimmer’s details?

Juan: Yes. The “Darius-13-100m-Fly” part can be broken apart on the “-”
character, giving us the swimmer’s name (Darius), their age group (under
13), the distance (100m), and the swimming stroke (Fly).

Matt: That’s assuming we can read the filename?

Juan: Isn’t that a given?

Ava: Not really, so we’ll still have to code for it, although I’m pretty sure
the PSL can help here.

Matt: This is getting a little complex…

Juan: Not if we take things bit-by-bit.

Ava: We just need a plan of action.

Matt: If we’re going to do all this work in Python, we’ll also have a bit
more learning to do.

Juan: I can recommend a great book… 



SHARPEN YOUR PENCIL

From the conversation on the last page, it looks like there are two main
tasks identified at this stage: (1) extract data from the filename, and (2)
process the swim times data in the file.

Grab your pencil and, for each of the identified tasks, write down what
you think are the required sub-tasks for both (in the spaces provided).
Our lists of sub-tasks can be found over the page.

 Extract data from the file’s name

___________________________________________

___________________________________________

___________________________________________

___________________________________________

___________________________________________

 Process the data in the file

___________________________________________

___________________________________________

___________________________________________

___________________________________________

___________________________________________

___________________________________________

___________________________________________

___________________________________________





SHARPEN YOUR PENCIL SOLUTION

From the recent conversation, it looks like there are two main tasks
identified at this stage: (1) extract data from the filename, and (2)
process the swim times data in the file.

You were to grab your pencil and, for each of the identified tasks, write
down what you thought the required sub-tasks are for both (in the
spaces provided). Here’s what we came up with. How did you do?.

 Extract data from the file’s name

 Process the data in the file







Don’t worry, we didn’t forget.

Let’s put that requirement on the long-finger for now, so that we can
concentrate on processing the file’s name and its data automatically with
Python.

Once done, we’ll return to the problem of automatically creating the bar
chart.

Pinky promise.

Task #1: Extract data from the file’s name
For now, the plan is to concentrate on a single file, specifically the file
which contains the data for the 100m Fly times for Darius, who is
swimming in the under 13 age group.

Recall the file containing the data you need is called Darius-13-100m-
Fly.txt.

Let’s create a Jupyter Notebook using VS Code called Darius.ipynb,
which you can create in your Learning folder. Follow along in your
notebook as, together, we work through Task #1.

Remember: To create a new notebook in VS Code, select File then New
File… from the main menu, then select the Notebook option.

A string is not really a string…



The value to the right of the assignment operator (=) in the above line of
code certainly looks like a string. After all, what’s shown is sequence of
characters enclosed within quotes which, in most other programming
languages, is the very definition of a string. Not so in Python.

The value to the right of assignment operator is a string object, which –
you might well think – isn’t that far off what a string is. However, the
difference in Python is both subtle and important.

Objects contain more than their value.



In Python, each object contains whatever value it refers to (which for
strings is a sequence of characters enclosed in quotes) as well as a
collection of methods that can be executed against the value. This is an
important distinction, so let’s consider how this works.

Let’s see what happens when Python runs this line of
code:

Behind the Scenes, 1 of 2

 First things first: the above line of code is a simple assignment
statement. It’s what the Python interpreter does in the background
that can often raise some eyebrows. What you’re about to be
shown on this and the next page may well feel like you’re heading



down a rabbit-hole, but bear with us for now. This is illuminating.
Here goes…

Python starts with whatever’s to the right of the assignment
operator, spots what looks like a string, so creates a new, empty
object in memory:

Behind the Scenes, 2 of 2

 The sequence of characters enclosed within quotes is assigned
to the value-part of the new object, then the list of string methods
built into Python are made accessible through the methods-part:



 The string object now exists in memory and, consequently, has
a memory address associated with it, known as its ID. This ID is
then associated with the variable name (which is found to the left
of the assignment operator, fn in the above line of code). It’s useful
to imagine Python maintains two tables in support of this
arrangement:



Yes. Sounds a bit bananas, doesn’t it?



When most programmers first have this explained to them, they
immediately suggest such an arrangement is very inefficient. Others simply
break into a sweat.

However, although there is a double-lookup occurring here, the fact
variables refer to object IDs (not actual values) is one of the things that
gives Python a lot of its power. We’ll be sure to point out where this makes
a big difference as you meet exemplars in this book.

Oh, one more thing: Pythonistas rarely refer to object IDs. Instead, the call
them object references.

GEEK NOTE

It’s important to note that Python never requires you to perform the
double-lookup, as it’s all handled automatically for you whenever you
use a variable.

And, although Python provides an id BIF which given a variable name
returns the variable’s object reference (i.e., it’s memory address), you
should never use nor rely on the value returned. Remembering to not
use the id BIF is really, really important. Let Python handle memory for
you, as you’ve more than enough to worry about trying to write the
code you need to build your application.

Let’s get back to that string…
Now that you know what goes on behind the scenes when a string’s object
reference is assigned to a variable name, let’s return to the list of methods
associated with any string.



The good news is you already know how to list any object’s methods: use
the print dir combo mambo.





RELAX

The print dir invocation produced a big list, but you only need to
worry about half of it.

You can safely ignore all of the methods which start and end with the
double underscore character, such as __add__ and __ne__. These are
this object’s “magic methods” and they do serve a purpose, but it’s far
too early in your Python journey to worry about what they do and how
you can use them. Instead, concentrate on the rest of the methods on
this list.



THERE ARE NO DUMB QUESTIONS
Q: If those double-underscore methods are not important, why are
they on the list returned by dir?

A: It’s not that they aren’t important, it’s more a case that you don’t
need to concern yourself with what they do at this stage. Trust us, when
you need to understand what the double-underscore methods do, we’ll
tell you. Pinky-promise.

Q: Is there a way I can learn more about what a particular method
does?

A: Yes, and we’ll show you how in a page or two. What’s cool is that
using Jupyter makes this an especially easy thing to do.

Q: It’s all a bit of a mouthful, all this double-underscore stuff, isn’t
it?

A: Yes, it is. Most Python programmers shorten “double_ underscore
add double_underscore” to simply “dunder add”. So, if you hear
someone refer to an method as “dunder exit”, what they are actually
referring to is __exit__. All of these (as a group) are called “the
dunders”. Further, any method which starts with a single-underscore is
known as a “wonder” (and – yes – it is a perfectly acceptable reaction to
groan at all of this).



SHARPEN YOUR PENCIL

Let’s try out two of the methods provided with strings. Take each of the
lines of code shown below and enter them into a new, empty code cell.
Execute each then – using a pencil – make a note (in the space
provided) of what you think each function attribute does.

 

fn.upper() ___________________

fn.lower() ___________________

 



No problem. Great question, by the way.

This is Python’s dot operator, which allows you to invoke a method on an
object. This means fn.upper() calls the upper method on the string
referenced by the fn variable.



This is a little different to the BIFs which are invoked like functions. For
instance, len(fn) returns the size of the object referred to by the fn
variable.

It’s an error to invoke fn.len() (as there’s no such method), just as it’s an
error to try upper(fn) (as there’s no such BIF).

Think of things this way: The methods are object-specific, whereas the
BIFs provide generic functionality which can be applied to objects of any
type.



SHARPEN YOUR PENCIL SOLUTION

You were asked you try out two of the methods provided. You were to
take each of the lines of code shown below and enter them into a new,
empty code cell. You were then to execute each, then – using a pencil –
make a note (in the space provided) of what you thought each method
did. Here’s what we think happens here:





Yes, that’s right.

The values returned by the upper and lower methods are both new string
objects, which have a value-part and a methods-part, as well as unique
object references (or IDs, if you prefer).

This is all by design: Python is supposed to work this way.



Returning to the diagram we used earlier to introduce object references,
here’s what it looks like as a result of the code from the Sharpen executing:

The three string objects are in the table of objects, with each assigned their
own object reference. Sadly, this state of affairs doesn’t last very long. As
the two most-recent string objects aren’t assigned to a variable name, there
are no actual references to them. The next time Python’s memory
management technology runs, the unreferenced objects are garbage
collected, and effectively disappear. Cue the sad music…

You’re still on Task #1
Recall the three sub-tasks identified earlier for Task #1: Extract data from
the file’s name:



As you’ve already got the filename in the fn variable, let’s take it as given
that sub-task (a) is done for now.

Breaking the filename apart by the “-” character is sub-task (b), and you’d
be right to guess one of the string methods might help. But, which one?
There’s 47 of them!



Sounds interesting.

Let’s see what the split method does.

You have a choice: You can run split and see what happens, or you can read
split’s documentation.

Don’t try to guess what a method does…
Read the method’s documentation!

Now, granted, most programmers would rather eat glass than look-up and
read documentation, claiming life is too short especially when there’s code
to be written. Typically, the big annoyance with this activity is the looking-
up part. So, Python makes finding and displaying relevant documentation
easy thanks to the help BIF.



Regrettably, Python can’t read the documentation for you, so you’ll still
have to do that bit yourself. But the help BIF let’s you avoid the context-
shift of leaving VS Code, opening up your web browser, then searching for
the docs.

To view the documentation for any method use the help BIF, like this:



Based on a quick read of this documentation, it sounds like the split method
is what you need here. Let’s take it for a quick spin.



TEST DRIVE

Let’s continue to work within your Darius.ipynb notebook to explore
what’s possible with the split method. Be sure to follow along.

As an opening gambit, let’s see what happens when we call split
without supplying any arguments:

If you flip back one page and re-read the split method’s documentation,
you’ll learn the default behavior is to split on whitespace (e.g., space,
tab, newline, carriage-return, formfeed, or vertical-tab). This is not what
you want here, as you want to break the fn string apart on the “-”
character.

Let’s try again, this time specifying “-” as the delimiter. Doing so is
easy, as all you do is pass the dash character as an argument to the split
method call:



You did read the “split” method’s documentation, didn’t you? The
answer’s right there…

The split method returns a list of words…
In this context, you can think of a “word” as being a synonym for “string
object”.

Lists in Python are data enclosed in square brackets.

Let’s review what just happened with the two calls to split shown in your
most-recent Test Drive.





Is it time for another tickmark?
It’s tempting to look at your list of sub-tasks, grab your pen, then put a
satisfying tick mark beside sub-task (b), isn’t it?

But doing so would be premature. Take a closer look at the list produced by
your call to the split method:



Emmm, maybe…

Let’s spend a moment or two with split to ensure you understand how it
works its magic.



EXERCISE

Let’s take a moment to solidify your understanding of how split works.

Without first running these program statements in your notebook, see if
you can describe what each of the statements do, noting down your
answers in the spaces provided. If you get stuck, don’t worry: Our
answers start on the next page. And, BTW, once you’ve tried to work
out what each statement does “in your head”, feel free to double-check
your work using VS Code (just don’t start there).







EXERCISE SOLUTION

You were to take a moment to solidify your understanding of how split
works.

Without first running these program statements in your notebook, you
were to see if you could describe what each of the statements do, noting
down your answers in the spaces provided. Our answers are on this
page and the next, together with what we see in VS Code when we
execute each statement. How closely do your answers match?







How to understand Python’s error messages
The last example in your most-recent Exercise produced a run-time error
message which likely has you scratching your head:



Err... Okay.

Whatever wets your whistle.

Just remember to always read Python’s error messages from the bottom-up,
and you’ll be fine (magic potions, notwithstanding). Also, note that Python
refers to its error messages by the name traceback.

But… just what is this particular traceback trying to tell you?

Be careful when chaining method calls



The idea behind that last example is solid: specify a chain of calls to split to
break the string object on “-” then again “.”:

Of course, this line of code failed, which is a bummer because the idea was
sound, in that you want to split your string twice in an attempt to break the
strings “Fly” and “txt” apart. But, look at the error message you’re
getting:



Yes, that’s exactly what’s happening.

The first split works fine, breaking the string object using “-”, producing a
list. This list is then passed onto the next method in the chain which is also
split. The trouble is lists do not have a split method, so trying to invoke
split on a list makes no sense, resulting in Python throwing it’s hands up in
the air with an AttributeError.

But… now you know this, how do you fix it?

Fixing broken chains
Let’s see what the Head First Coders think your options are:





BRAIN POWER

You’re trying to get rid of that “.txt” bit at the end of the original
string. Here’s the list of string methods from earlier. Do any of these
method names jump out at you?

'capitalize', 'casefold', 'center', 'count', 'encode', 'endswith', 
'expandtabs', 
'find', 'format', 'format_map', 'index', 'isalnum', 'isalpha', 'isascii', 
'isdecimal', 'isdigit', 'isidentifier', 'islower', 'isnumeric', 
'isprintable', 
'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 
'maketrans', 'partition', 'removeprefix', 'removesuffix', 'replace', 
'rfind', 
'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split', 
'splitlines', 
'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill'

Strings can do more than just split
As Python has trained us to always read from the bottom-up, the first
method to catch our eye is rstrip. Use the help BIF to learn a bit about
rstrip from within your VS Code notebook:





TEST DRIVE

Follow along in VS Code while you test the rstrip method against
some test values similar to those you’ll encounter.

Let’s try another string method



Undaunted, let’s return to the list of string methods to continue your search:

As with the rstrip method, ask the help BIF for details on what
removesuffix does:



Let’s take this method for a spin in your notebook.



TEST DRIVE

As when you tested rstrip, let’s throw some test data at the
removesuffix method, too:

Now that you’ve identified the method you need, you can create the
method chain needed to extract the data you need from the fn string
object:





THERE ARE NO DUMB QUESTIONS
Q: Can method chains be of any length?

A: Yes. Although you do need to think about code readability. The
examples seen thus far have chained two methods together, which is not
hard to get your head around. But imagine if a programmer decides to
chain a dozen methods together? Python let’s the programmer do this,
but you’ll likely pull your hair out trying to decipher what such a large
chain does… or maybe you’ll want to hunt down the programmer so
you can pull their hair (not that we’re condoning such behavior… it’s
just that we understand the urge).

Q: When I run the code in this chapter the original string in my fn
variable never changes. What if I want to apply the changes to the
original string. Can I do this?

A: The short answer is no. The longer answer is also no, in that you
cannot change a string object in Python once it’s defined. Strings in
Python are immutable (they cannot mutate or change once they exist).
This behavior is by design, and sometimes strikes programmers from
other languages as strange. Python treats strings as a basic data type,
like numbers. Numbers are also immutable. Once 42 exists in your code
it cannot be mutated nor changed. It’s always 42. Same thing with
strings. If a string has the value “Marvin”, it’ll remain that value until
one of two things happen: (1) your code terminates or (2) the Universe
ends.

Q: Is the fact that strings are immutable not a huge disadvantage?

A: Not really. Knowing that strings can never change frees you from
having to worry about a whole host of nasty side-effects.

Q: Let me get this straight: When I assign the string “Galaxy” to a
variable called place, I can never change place’s value later in my
code due to strings being immutable?!?



A: No, that’s not what this means, as it’s not the same thing. The string
“Galaxy” once defined can never be changed. However, when the
string is assigned to your place variable, the string’s object reference is
assigned to place, not the actual string “Galaxy”. It’s perfectly legal,
later in your code, to assign a different object reference to place (after
all, that’s what variables are in Python: somewhere to store an object
reference). But, the string object which contains “Galaxy” can never
change. The string object “Galaxy” and the variable name place are
two different things.

Q: So, what happens to a string (“Galaxy” for example) which is
assigned to a variable in some code then, later, the variable is
assigned some other value? Does “Galaxy” just hang around?

A: Doesn’t every galaxy just hang around? [Apologies to all the
Astronomers reading this]. Joking aside, once any previously created
object in Python gets to the stage where it is no longer referred to by
any variable, it is garbage collected by Python’s memory management
system. You don’t need to do anything to make this happen, as Python
takes care of all the details.

You’re nearly done with Task #1
There’s one last sub-task to complete, namely part (c):

Your last line of code produced a list with the four values you need, but
how do you assign each of these four values to individual variables?



Indeed they do.



When working with lists, it is possible to use the familiar square bracket
notation. And, as in most other programming languages, Python starts
counting from zero, so [0] refers to the first element in the list, [1] the
second, [2] the third, and so on.

Let’s put this new-found list knowledge to immediate use.



TEST DRIVE

NOTE
Don’t forget to follow along!

The line of code from the last page produces a list of four data values:

Let’s assign this generated list to a variable called parts, remembering
that parts is not a list, it’s a variable name which contains an object
reference to the generated list:



Although it’s a bit of an oversimplification, you can often think of
Python lists as being like arrays… so, knowing this, you can use the
square bracket notation to assign each individual data value to its own
variable:

And sure enough, each individual variable name refers to an individual
data value. Take swimmer, for instance:

It looks like Task #1 is complete!
Let’s remind ourselves of the sub-tasks for Task #1, which was to extract
the data you need from the file’s name:



Considering the code from your last Test Drive, you’re now done with Task
#1.

Having used VS Code and Jupyter to work out the code you need, it’s a
simple task to copy’n’paste the code for Task #1 into a new cell. And,
although you’re coming up on forty pages for this chapter, the amount of
code you need to copy isn’t overwhelming, is it?

We were all set to begin celebrating getting to this point, but it looks like
someone has a question…





The parts variable feels kinda integral.

That said, we get where Nina’s coming from, in that parts is created to
temporarily hold the list of data items, which is then combined with the
square bracket notation to extract the individual data items. Once that’s
done, the parts list is no longer needed.

But, can you do without parts?

NOTE
So… if the “parts” variable is not needed, does this mean it’s spare? (Sorry).

Can you do without the parts list?
Short answer: yes.

Of course, getting to the point where you understand the short answer is a
bit more involved. But, don’t worry, it’ll all make sense in a bit.

The first thing to remember is that the split method at the end of the chain
of calls on the fn variable produces a list:

The list is then assigned to the parts variable name, allowing you to use
the square bracket notation to access the data you need:



As the split method produces a list, you could do what’s shown below to
achieve the same thing as what’s shown above, removing the parts
variable from the code:

Although the parts variable is no more, can you think of a reason why
this version of your code may not be optimal?

We can think of three reasons!
The latest code does work, but at a cost.

 The latest code is slow

The original code generated the list once, assigned it to the parts list,
then used the list as needed. This is efficient. The latest code generates
the list four times, which is hugely inefficient.

 The latest code is harder to read



It’s clear what the original code is doing, but the same can’t be said for
the latest code, which – despite being a clever bit of Python – does
require a bit of mental gymnastics to work out what’s doing on. The
code looks (and is) more complex as a result.

 The latest code is a maintenance nightmare

If you’re asked to change the suffix from ".txt" to, say, ".py", it’s an
easy change when working with the original code (as it’s a single edit).
With the latest code, you have to apply the edit four times (multiple
edits) which can be fraught with danger.

First off: rude. Secondly: not so fast.

Yes, the latest code is more trouble than it’s worth, but the idea of removing
the parts variable from your code still has merit, as it’s of no use once the
assignment to the swimmer, age, distance, and stroke have occurred.

Perhaps there is another way?



Multiple assignment (aka unpacking)
Although it’s a language idea which is not unique to Python, the notion of
multiple assignment is a powerful feature of the language. Also know as
unpacking within the Python world, this feature lets you assign to more
than one variable on the left of the assignment operator with a matching
number of data values to the right of the assignment operator.

Here’s some example code which demonstrates how this works:



Not the following: You can match any number of variable names against
values (as long as the number of each on both sides of the assignment



operator match). And, Python treats the data values on the right as if they
are a list, but does not require you to enclose the literal data values within
square brackets (as shown above).



Yes, that’s what this means.



Python programmers describe the list as being “unpacked” prior to the
assignment, which is their way of saying the list’s data values are taken
one-by-one and assigned to the variable names one-by-one.

The single list is unpacked and assigned to multiple variable names, one at
a time.



SHARPEN YOUR PENCIL

Grab your pencil and see if you can fill in the blanks below. Based on
what you now know about multiple assignment (unpacking), provide
the individual lines of code which assign the correct unpacked values to
the individual variable names. Provide the printed output, too.







SHARPEN YOUR PENCIL SOLUTION

You were to grab your pencil and see if you could fill in the blanks.
Based on what you knew about multiple assignment (unpacking), you
were to provide the individual lines of code which assign the correct
unpacked values to the individual variable names. You were to provide
the printed output, too. Here’s our code, below. Is your code the same?



Task #1 is done!
Recall the list of sub-tasks once more:





Great. Thanks!

Of course, there’s still a bit of work to do. Let’s remind everyone what Task
#2 is (over the page).

Task #2: Process the data in the file
At first glance, it looks like there’s a bit of work here:

1. Read the lines from the file



2. Ignore the second line

3. Break the first line apart by “,” to produce a list of times

4. Take each of the times and convert them to a number from the
“mins:secs.hundredths” format

5. Calculate the average time, then convert it back to the
“mins:secs.hundredths” format (for display purposes)

6. Display the variables from Task #1, then the list of times and the
calculated average from Task #2

So much, in fact, that we’ve made an Executive Decision and decided to
hold off on starting this work until your next chapter. Before getting to that,
though, you’ve just enough time to do two things: make a cup of your
favorite brew, and, sip your beverage while working through this chapter’s
crossword.

The Unpacking Crossword

All of the answers to the clues are found in this chapter’s pages, and the
solution is on the next page. Have fun!



Across

2. Can be used to get rid of a filename’s extension.

4. Removes a set of characters from the end of a string.

5. Short for “double underscore”.

7. Another name for multiple assignment.

9. Ball and ________.



10. The plural name given to an object’s built-in functions.

14. Comes in handy when breaking apart strings.

Down

1. Every object in Python has 10 across, in addition to this.

2. It’s not an object identifier, it’s an object __________.

3. The swim coach mucks about with one of these.

6. More than one.

8. Never rely on the value returned by this BIF.

11. Everything is one of these.

12. Our favorite brackets.

13. This is sort of like an array in other programming languages.

The Unpacking Crossword Solution



Across

2. Can be used to get rid of a filename’s extension.

4. Removes a set of characters from the end of a string.

5. Short for “double underscore”.

7. Another name for multiple assignment.

9. Ball and ________.



10. The plural name given to an object’s built-in functions.

14. Comes in handy when breaking apart strings.

Down

1. Every object in Python has 10 across, in addition to this.

2. It’s not an object identifier, it’s an object __________.

3. The swim coach mucks about with one of these.

6. More than one.

8. Never rely on the value returned by this BIF.

11. Everything is one of these.

12. Our favorite brackets.

13. This is sort of like an array in other programming languages.



Chapter 2. Lists of Numbers:
Processing List Data

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 2nd chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at mpotter@oreilly.com.



The more code you write, the better you get. It’s that simple. In this
chapter, you continue to write real code to solve a real problem. In order to
keep coding your solution, you need to learn how to read data from a file.
More times than enough, the data read from files ends up in a list, one of
Python’s most-used built-in data structures. As well as learning how to
create lists from file data, you’ll also learn how to create lists from scratch,
growing the list as needs be while your code runs. You’ll also process your
lists using one of Python’s most popular (and loved) looping constructs, the



for loop, converting values from one data format to another. So, roll up
your sleeves and let’s get stuck in!

Task #2: Process the data in the file
With Task #1 complete, it’s time to move onto Task #2. There’s a bit of
work to do but, as with the previous chapter’s activities, you can approach
things bit-by-bit as detailed in the last chapter:

1. Read the lines from the file

2. Ignore the second line

3. Break the first line apart by “,” to produce a list of times

4. Take each of the times and convert them to a number from the
“mins:secs.hundredths” format

5. Calculate the average time, then convert it back to the
“mins:secs.hundredths” format (for display purposes)

6. Display the variables from Task #1, then the list of times and the
calculated average from Task #2



It’s time to get to work.

You won’t be done by the time the Coach is finished his warm-up, but
you’ll definitely make progress by the end of today’s swim session.

Let’s get started by grabbing a copy of this chapter’s data before learning
how Python reads data from a file.

Grab a copy of the Coach’s data
There’s no point learning how to read data from a file if you have no data to
work with. So, head on over to this book’s support website and grab the



latest copy of the Coach’s data files. There are 62 individual data files
packaged as a ZIP archive. Grab a copy from here::

https://python.itcarlow.ie/ed3/Learning/swimdata.zip

NOTE
Don’t worry, those 62 data files are small so it only takes a few seconds for the ZIP to
download.

Once your download completes, unzip the file then copy the resulting
swimdata folder into your Learning folder. This ensures the code which
follows can find the data as it’ll be in a known place.

Each file in the swimdata folder contains the recorded times for one
swimmer’s attempts at a specific underage distance/stroke pairing. Recall
the data file from the start of the previous chapter which shows Darius’s
under-13 times for the 100m fly:

https://python.itcarlow.ie/ed3/Learning/swimdata.zip


Yes, it does.

There’s a BIF called open which can work with files, opening them for
reading, writing, appending, or any combination of the above.

The open BIF is powerful on it’s own, but it shines when combined with
Python’s… em, eh… with statement.

The open BIF works with files
Whether your file contains textual or binary data, the open BIF can open
the file to read, write, or append data to/from it. By default, open reads
from a text file, which is perfect as that’s what you want to do with the
Darius’s data file.

You can call open directly in your code, opening a named file, processing
its data, then closing the file when you’re done. This open-process-close



pattern is very common, regardless of the programming language you use.
In fact, Python has a language statement which makes working with the
open-process-close pattern especially convenient: the with statement.

Although there’s a bit more to the with statement than initially meets the
eye, there’s only one thing that you need to know about it right now: If you
open your file with with, Python arranges to automatically close your file
when you’re done, regardless of what happens during whatever processing
you perform on the file.





TEST DRIVE

NOTE
As always, follow along.

Let’s see the with statement together with the open BIF at work, so you
can get in on the action.

For the code which follows to work, the assumption is you’ve already
downloaded the Coach’s data, unzipping the file into a folder called
swimdata within your Learning folder. Do that now if you forgot (and
skip back two pages for the URL to use).

To get going, create another new notebook in VS Code, and give it the
name Average.ipynb, saving this latest notebook in your Learning
folder.

To identify the file you plan to work with you need two things: the file’s
name and the location it’s to be found in. Here’s how Python
programmers would define constants for these values:



Although referred to as “constants”, Python doesn’t actually support the
notion of constant values, so it is a convention within the Python
programming community to use UPPERCASE variable names to signal
to other programmers that the values are constant (and should not be
changed).And, yes, eagle-eyed readers will have spotted that we –
rather blatantly – disregarded this convention in the previous chapter
when we named our filename variable “fn”. This is, of course, a
shocking use of a lowercase variable name for a constant value! Just to
be clear, we won’t tell if you won’t tell… and we promise to conform to
this convention from here on in.

With your constants defined, here’s the Python code which opens the
file, reads all its data into a list called (exploiting unprecedented
imagination here) data, then automatically close the file:

Not much code, but there’s lots happening…



The code is not very long, but – as the annotations at the bottom of the last
page indicate – there’s a lot going on:

Let’s highlight three important take-aways:

 The with statement opens the file before its code block runs.

You may well be asking “Which code block?”, and you’d be right to. We
haven’t told you yet, but the with statement’s code block is all the code
indented under it. In this case, the code block is only one line long and
that’s OK (code blocks can be of any length).

NOTE
If you are coming to Python from one of those programming languages which uses
curly-braces to delimit blocks of code, using indentation in this way may unnerve
you. Don’t let it, as it’s really not that big a deal.



It not that we don’t want to talk about indentation.

It’s just we feel there’s much more to Python than its use of indentation (or,
more correctly, whitespace) to delimit code blocks. Yes, it’s an important
aspect of the language, but it’s something most Python newbies get used to
quickly. When we need to, we’ll call it out, otherwise we’ll just get on with
things. And with that said, let’s get back to the take-aways.

 The with statement closes the file after its code block runs.

This is a cool feature, as we’d forgotten to do this. It’s nice to know the
with statement has your back, tidying up after your code block executes.

 Two variables are created by the code: df and data.

The df variable refers to a file object created by the successful execution of
the open BIF. The data variable refers to the list of lines read from the df
file object by the readlines method. Both variables continue to exist after



the code block ends, although the df variable now refers to a closed file
object.

Variables are created dynamically, as needed
The df and data variables were created as a result of assignment. Although
it’s easy to see how data came into being, thanks to the use of the
assignment operator (=), it’s less clear what’s going on with df.

The key word is “as”.

Thanks to that with, the as keyword takes the open BIF’s return value and
assigns it to the identified variable name, which is df in your code. It’s as if
this code ran:



df = open(FOLDER+FN)

The as keyword, together with with, does the same thing (and looks nicer,
too).

Let’s take a closer look at what df is, as well as learn a bit about what it can
do:

It’s not that file objects aren’t exciting…
It’s just, in this case, the file object is merely a means to an end: loading the
file’s lines into the data variable. So, what’s data and what can you do
with it?





Don’t forget to press Shift+Enter to execute code cells.



Yes, with some help from “with”.

Despite being a single-line code block, a lot’s happening here. Not only has
your data list been created and populated with the data contained within
the swimmer’s file, but those two lines of code have managed to complete
the first two sub-tasks for Task #2.

Take a look (over the page).

Work has started on Task #2
Those two lines of code pack a punch. Here they are again:

The data value in the first slot in the data list is a string representing the
swimmer’s times:

You can safely ignore anything else in the file, as the data you need is in the
above string. It’s time for a couple tick marks to indicate your progress with
Task #2:



The third sub-task should not be hard for anyone who has spent any amount
of time working with Python’s string technology. As luck would have it,
you’ve just worked through the string material in the previous chapter, so
you’re all set to have a go. But before you get to that sub-task, we need to
talk a little about one specific part of that with statement: the colon.

Your new best friend, Python’s colon
The colon (:) indicates a code block is about to begin.

Unlike a lot of other programming languages, Python does not use curly
braces ({ and }) to delimit blocks. Instead Python uses indentation (or, to
be more correct, whitespace). In fact, in Python, curly braces delimited
data, not code.



A code block in Python ends when the indentation ends.

In the with statement, the block contains a single line of code, but it could
potentially contain any number of lines of code. Code indented to the same
level as the immediately preceding line of code belongs to the same code
block.

The use of the colon is critical here (which is why it’s your new best
friend). Like in real life, if you forget your best friend, bad things happen. If
you forget the colon at the end of that line, your code refuses to run!

Think of the colon and indentation as going together: you can’t have one
without the other.





THERE ARE NO DUMB QUESTIONS
Q: When it comes to blocks of code within blocks of code, do I just
need to increase the level of indentation?

A: Yes. If you are used to using curly braces to indicate the start and
end of a block of code, you have likely had a need to embed a block of
code within another block of code, ending up with curly braces inside
curly braces. It’s the same thing with Python, except the level of
indentation increases. Visually, it is easy to work out where the block of
code starts and ends. It starts on the line right after the colon, and it
ends with the block’s indentation level ends.

Q: Is there a standard indentation spacing value? Do most people
use four spaces to indicate indentation, or can two spaces be used?
Does it matter?

A: To be honest, it doesn’t really matter whether you use four spaces,
two spaces, or any number of spaces to indicate indentation. The tab
character can also be used. What does matter is that whatever you do,
your usage needs to be consistent. If you use four spaces on one line of
code, you can’t use two spaces on the next, nor can you mix’n’match
spaces with the tab character. The Python parser gets confused when
you do mix’n’match and raises an IndentationError or TabError.
Note: if you consistently use four spaces, two spaces, or the tab
character to indicate your level of indentation, you’ll never see either of
those errors.

Now, having said all that, there is a convention in the Python
programming community which strongly suggests using four spaces
consistently to indent your code. Many Pythonistas configure their text
editors to automatically replace a press of the tab key with four spaces.
Also, be warned: if you are sharing code with other Python
programmers and you haven’t used four spaces to consistently indent
your code, you better be ready to explain why.

Consistency is good.



You may not have noticed, but VS Code consistently uses four spaces to
indent your Python code, automatically indenting to the correct level
whenever you indicate a new block is about to begin by correctly
putting a colon at the end of the line.

SHARPEN YOUR PENCIL

In the previous chapter you took a string then applied the split and
removesuffix methods to it to produce the data values you needed from
the file’s name.

A similar strategy can be applied to your next sub-task, although you
are unlikely to need to use removesuffix. The string you’re working
with has a newline character (\n) at the end you don’t need. Find a
string method to use in place of removesuffix to enable you to remove
the newline character from the string. Combine the call to the new
method in a chain which includes split to break the string apart by “,”
producing a new list, which you can assign to a new variable called
times.

Experiment in your VS Code-hosted notebook until you’ve written the
code you need, then write the code which create the times variable in
the space provided below (and our code is on the next page):

___________________________________________

___________________________________________



Yes, to both questions.

Yes, we did indeed introduce strings in the previous chapter and, yes, we’re
concentrating on lists in this one.

Recall the split method produces a list from a string, which is precisely why
you need to use it now. If your times variable, above, isn’t a list, you’re
likely doing something wrong.



When you’re ready, flip the page to see the code we came up with.

SHARPEN YOUR PENCIL SOLUTION

In the previous chapter you took a string then applied the split and
removesuffix methods to it to produce the data values you needed from
the file’s name.

A similar strategy can be applied to your next sub-task, although you
are unlikely to need to use removesuffix. The string you’re working
with has a newline character (\n) at the end you don’t need. Knowing
this, you were asked to find a string method to use in place of
removesuffix to enable you to remove the newline character from the
string. You were to combine the call to the new method in a chain
which was to include split to break the string apart by “,” producing a
new list to be assigned to a new variable called times.

It was suggested you experiment in your VS Code-hosted notebook
until you’ve written the code you need, then you were to write the code
to create the times variable in the space provided below. Here’s what
we came up with:



That was almost too easy
With your prior experience of working with strings from the previous
chapter, we’re hoping that most recent Sharpen wasn’t too taxing.

It is important to call strip before split, producing a new list from the data
value in the data’s first slot (data[0]). In fact, your latest chain code is
very similar to the code from the previous chapter:



With the result of your latest chain assigned to the times variable, you’ve
completed sub-task (c). It’s time for another tick mark.

Pause to review this task’s code
Here’s how you can combine the code so far in a single code cell within VS
Code:



If you go ahead and try both of these with statements in your notebook
you’ll learn that both populate the list times refers to with the same
collection of strings. So, why not use the two-line version of the code as
opposed to the three-line version? After all, just like with the parts list in
the previous chapter, the data list is no longer needed once it’s been used
that one time…



No, it’s not hard to read. It’s a nightmare.

Three methods are chained here, with the first one creating a list, from
which you take the first slot’s data (using the square bracket notation), then
you strip it before splitting it… but, what does “it” refer to again?!?

This single line of code is hard to read, understand, explain, and maintain.
We pity the poor programmer asked to “fix” this code at some point in the
future (who, most likely, will be you).

Converting a time string into a time value
After the code from the previous page runs, the times variable refers to a
list of strings:



The values in each of the slots in the times list certainly look like swim
times, but they are not. They are strings. To perform any numeric
calculation on this list, such as working out an average, these strings need to
be converted into numeric values.

Let’s take a closer look at just on value (the first). If you can come up with
a strategy for converting this first time, you can then apply it to the rest of
the list.



BRAIN POWER

Assuming you can extract the three numbers you need from the string,
can you think of a calculation which converts the string into a numeric
value?

NOTE
There’s more than one way to do this, so don’t worry if what you think up isn’t the
same method as ours (which is detailed over the page).

Convert the times to hundredths of seconds
At the moment, all the swim times are strings. Assuming you can extract
the numeric values from the string, converting the swim time to a number
representing the time as hundredths of seconds should work. Here’s how to
do this:





Turning this conversion strategy into Python code is remarkably
straightforward. Let’s take a look.

Swim times to hundredths of seconds
Ready Bake Code

The strategy described on the previous page can be turned into Python code
without too much difficulty.

In the code which follows, some of the annotations from the previous page
are converted to single-line comments which start with the # character and
continue to the end of the line (and are, obviously, ignored by the Python
interpreter).

VS Code, like most other editors, displays comments in a different color to
your code.



If you type this code into a new code cell in your notebook, then press
Shift+Enter, the value 8795 appears on screen. Sweet.

If you can convert one swim time…



You can convert them all. And, there’s no extra credit awarded for guessing
you need to employ a loop here.

Python’s favorite looping mechanism: for
Like most programming languages, Python provides many ways to loop,
with the for loop being a favorite of many Pythonistas. Let’s look at a
simple loop which takes each of the swim times strings from the times list
and displays them on screen:





Cool, isn’t it?

The for loop is smart enough to know all about the length of the list it is
processing.

There’s always a temptation to use the len BIF to work out how big your
list is before it’s looped over, but with for this is an unnecessary step. The
for loop starts with the first value in the list, takes each value in order,



processes the value, then moves onto the next. When the list is exhausted,
the for loop terminates.

This is the sort of magic we love.

EXERCISE

Now that you’ve seen the for loop in action, take a moment to
experiment in your notebook to combine the Ready Bake Code from a
few pages back with a for loop in order to convert all of the swim times
to hundredths of seconds, displaying the swim times and their converted
values on screen as you go. When you are done, write the code you
used into the space below. Our code is coming up in two pages time.

___________________________________________

___________________________________________

___________________________________________

___________________________________________

___________________________________________

___________________________________________



Python does indeed support while.

But, the while loop in Python is used much less than an equivalent for.

Before getting to our solution code for the above exercise, let’s take a
moment to compare for loops against while loops.

The gloves are off… for loops vs. while loops
Here’s the for loop from earlier, together with its output:



And here’s an equivalent while loop which does exactly the same thing:



Not only is the while loop’s code twice the number of lines as the for loop,
but look at all the extra stuff you have to concern yourself with! There’s so
many places where the while loop can go wrong, unlike the for loop. It’s
not that while loops shouldn’t be used, just remember to reach for the for
loop first in most cases.



EXERCISE SOLUTION

Now that you’ve seen the for loop in action, you were to take a moment
to experiment in your notebook to combine the Ready Bake Code from
a few pages back with a for loop in order to convert all of the swim
times to hundredths of seconds, displaying the swim times and their
converted values on screen. You were to write the code you used into
the space below. Here’s the code we came up with:



TEST DRIVE

Taking the Exercise Solution code for a spin produces the expected
output:

You’re motoring now!
You are now past the mid-point of your sub-tasks for Task #2:



With the first part of sub-task (e), you have choices.



Either approach works.

However, if you think the converted times might be needed later, perhaps
creating a new list of converted times is the way to go…

What do you think?

Let’s keep a copy of the conversions
Although, to be honest, either of the two approaches from the bottom of the
last page would work for the first part of sub-task (e) of Task #2: Calculate
the average time. However, we haven’t forgotten about the Coach’s



requirement to produce bar charts, so we’re guessing these converted values
will be needed at least once more., so it’s likely best if we put them in
another list while we perform the conversions.

To do this, you need to learn a bit more about lists. Specifically, how to
create a new, empty list, and how to incrementally add data values to your
list as you iterate over the times list.

Creating a new, empty list
Step 1: think up a meaningful variable name for your list. Step 2: assign an
empty list to your new variable name.

Let’s call your new list converts. Here’s how to perform Step 1 and 2 in a
single line of code:

Recall that the type BIF is used to determine what type a variable refers to.
A quick call to type confirms you’re working with a list, and a call to the
len BIF confirms your new list is empty:



Can you remember what you need to do to display your new list’s built-
in methods?

Displaying a list of your list’s methods
It’s combo mambo time!

As with any object in Python, the print dir combination lists the object’s
built-in attributes and methods. And as everything in Python is an object,
lists are objects too!



The first non-dunder method name is append. You can likely guess what it
does, but let’s use the help BIF to confirm:

Ah ha! That final line of output (“Append object to the end of the list.”) is
all you need to know, even though it’s tempting to take some time to
experiment with those other methods, some of which sound cool. But, let’s
not do that. Let’s stick to the task of building a new list of converted swim
time values as you go.



No, you do not need to worry.



In the previous chapter, we made a big deal about lists in Python being like
arrays in other programming languages. This let us introduce the use of the
square bracket notation with lists, which is a common technique when
working with arrays and lists.

However, unlike with arrays, where you typically have to say how big your
array is likely to get (e.g., 1000 slots) and what type of data it’s going to
contain (e.g., integers), there’s no need to declare either of these with your
Python lists.

Python lists are dynamic, which means they grow as needed (so there’s no
need to pre-declare the number of slots beforehand). And Python lists don’t
contain data values, they contain object references, so you can put any data
of any type in a Python list. You can even mix’n’match types.



SHARPEN YOUR PENCIL

Grab your pencil, as you’ve work to do. Here’s the most recent code
which displays the swim time strings together with equivalent
conversion to hundredths of seconds:

Adjust the above code to do two things: (1) Create a new empty list
called converts right before the loop starts, and (2) Replace the line
which starts with a call to the print BIF with a line of code which adds
the converted value onto the end of the converts list. Write your code
in the space below (and, when you’re ready, check you code against
ours on the next page):





SHARPEN YOUR PENCIL SOLUTION

You were to grab your pencil, as you’d work to do. You’d been shown
the most recent code which displays the swim time strings together with
equivalent conversion to hundredths of seconds:

Your job was to adjust the above code to do two things: (1) Create a
new empty list called converts right before the loop starts, and (2)
Replace the line which starts with a call to the print BIF with a line of
code which adds the converted value onto the end of the converts list.

Here’s the code we came up with:





TEST DRIVE

Let’s take your latest code for a spin. Recall the previous version of
your loop produced this output:

Your new loop code is similar, but does not produce any output.
Instead, the converts list is populated with the conversion values.
Below, the new loop code executes in a code cell (producing no output)
then, in two subsequent code cells, the contents of the times list as well
as the (new) converts list is shown:



It’s time to calculate the average
You don’t need to be a programmer to know how to calculate an average
when given a list of numbers. The code is not difficult, but this fact alone
does not justify your decision to actually write it. When you happen upon a
coding need which feels like someone else may have already coded it, ask
yourself this question: I wonder if there’s anything in the Python Standard
Library which might help?



There is no shame in reusing existing code, even for something you
consider simple. With that in mind, here’s how to calculate the average from
the converts list with some help from the PSL:

Don’t forget the PSL – it’s full of cool code.

Although calculating the average is easy, as shown above you haven’t had
to write a loop, maintain a count, keep a running total, nor perform the
average calculation. All you do is pass the name of the list of numbers into
the mean function which returns the arithmetic mean (i.e., the average) of
your data. Cool. That’ll do.



Yes, as mins:secs.hundredths.

In effect, you need to reverse the process from earlier which converted the
original swim time string into it’s numeric equivalent.

It can’t be that hard, can it?

Convert the average to a swim time string
An experienced Python programmer knows enough to apply a few “tricks”
to the problem of converting your hundredths of seconds back into the
mins:secs.hundredths string format. You’ll learn about these techniques
later in this book, as showing them to you now would likely double the size
of this chapter. So, for now, let’s (mostly) stick with the Python you already
know to perform this task.

Follow along in your notebook while you’re walked through the five steps
to perform the conversion. Here’s what you’re trying to do:

Be sure to follow along on your computer.



 Begin by converting the hundredths value to its seconds equivalent.



 Break the rounded average into it’s component parts.

 Calculate the number of minutes.



 Calculate the number of seconds.



 With minutes, seconds, and hundredths now known, build the swim
time string.





Yes, and it’s easier than you think.

You could go off and learn how to write automated tests in Python, then
code-up any number of tests to check your calculations…

Or you could simply take another look at the swim coach’s spreadsheet to
confirm your calculated swim time of ‘1:26.58’ matches the average as
calculated by the Coach’s spreadsheet.



And it does, as shown below.

It’s been a while since your last tick mark…
Congratulations! You are finally able to place a well-deserved tick against
sub-task (e).

All that remains is to combine the code from the previous chapter with the
code seen so far in this chapter. Once that’s done, sub-task (f) will be done
too:





EXERCISE

At this stage, you should have a number of Jupyter notebooks in your
Learning folder. To complete this exercise, you’ll need to study the
code in two of them: Darius.ipynb and Average.ipynb.

Create a new notebook, called Times.ipynb, which contains the Python
code you need to execute to complete sub-task (f) above. All the code
you need already exists, and all you’re doing here is copying the
relevant code from your two existing notebooks into your new one.

Be sure to execute all the code in your new notebook to confirm it
executes as expected.

Take your time with this exercise then, when you’re ready, flip the page
to see our Times.ipynb in action.



EXERCISE SOLUTION

At this stage, you should have a number of Jupyter notebooks in your
Learning folder. To complete this exercise, you had to study the code
in two of them: Darius.ipynb and Average.ipynb.

You were to create a new notebook, called Times.ipynb, which
contained the Python code you needed to execute to complete sub-task
(f). All the code you need already existed.

You were to be sure to execute all the code in your new notebook to
confirm it executes as expected.

Here’s the code we copied into Times.ipynb and executed. How does
the code you copied compare?







Task #2 (finally) gets over the line!
Well done! With the creation (and execution) of the Times.ipynb
notebook, the two tasks identified at the start of the previous chapter are
now complete. It’s a case of tick marks all around!





Of course, getting to this point doesn’t necessarily mean you’re done…





If something can be done once, it can be done again, and again, and
again…

At the moment, your code only works with the data for one specific data
file. There are another 60+ files in the Coach’s dataset. It would be nice if
there was a way to use this code with any of them on demand, and as
needed.

Doing so is something you can mull over on your way to the next chapter
when we’ll work through a solution to this problem together.

Before getting to that point, it look’s like someone else has another
question.





No, we haven’t forgotten.

The next chapter lays the groundwork for getting to the point where you can
tackle the graphing requirement, so bear with.

For now, let’s conclude this chapter with another topical crossword puzzle.
Enjoy!

The Listers Crossword

All of the answers to the clues are found in this chapter’s pages, and the
solution is on the next page. Got for it!



Across

1. Python programmer’s favorite looping construct.

5. When a variable name is in UPPERCASE, it’s meant to be treated as one
of these.

9. This method creates a list from your file’s data.

12. Part of a famous combo, when paired with split.



13. The less-used looping construct.

15. Another name for whitespace when used with code blocks.

17. Your new BFF.

Down

2. Another powerful combo when used with 7 down.

3. // performs _______ division.

4. A numeric conversion BIF.

6. A module loved by Maths-heads.

7. The recommended statement to use when opening files.

8. This method grows lists.

10. A small keyword which you’ll learn more about in a later chapter.

11. A string-creating BIF.

14. A BIF to control decimal places.

16. This [] signifies an ______ list.

The Listers Crossword Solution



Across

1. Python programmer’s favorite looping construct.

5. When a variable name is in UPPERCASE, it’s meant to be treated as one
of these.

9. This method creates a list from your file’s data.

12. Part of a famous combo, when paired with split.



13. The less-used looping construct.

15. Another name for whitespace when used with code blocks.

17. Your new BFF.

Down

2. Another powerful combo when used with 7 down.

3. // performs _______ division.

4. A numeric conversion BIF.

6. A module loved by Maths-heads.

7. The recommended statement to use when opening files.

8. This method grows lists.

10. A small keyword which you’ll learn more about in a later chapter.

11. A string-creating BIF.

14. A BIF to control decimal places.

16. This [] signifies an ______ list.



About the Author
Paul Barry has a B.Sc. in Information Systems, as well as an M.Sc. in
Computing. He also has a postgraduate qualification in Learning and
Teaching. Paul has worked at The Institute of Technology, Carlow since
1995, and lectured there since 1997. Prior to becoming involved in
teaching, Paul spent a decade in the IT industry working in Ireland and
Canada, with the majority of his work within a healthcare setting.


	Preface
	Install the latest Python 3
	Installing on Windows
	Installing on macOS
	Installing on Linux

	Python on its own is not enough
	Install the latest Jupyter Notebook back-end
	Install the latest release of VS Code

	Configure VS Code to your taste
	Add 2 required extensions to VS Code
	VS Code’s Python support is state-of-the-art

	Why Python?: Similar But Different
	Getting ready to run your code
	You’ll use VS Code for everything
	Python, Jupyter, and VS Code
	Preparing for your first REPL experience
	Python code is easy to run!
	Pressing Shift+Enter runs your code cell
	Python code really is easy to run
	But, wait! There’s more…
	Python ships with a rich standard library
	BTW: Python is not a “toy language”
	Only write the code you need
	The PSL comes packed with powerful built-in functions

	BIFs provide practical, generic functionality
	The print dir combo mambo
	Getting help with dir’s output
	There’s built-in functionality everywhere!
	The Big 4: list, tuple, dictionary, and set
	Python has powerful built-in operators
	Python’s package ecosystem is to die for
	The Opening Crossword
	The Opening Crossword Solution

	Just when you thought you were done…

	1. Diving in: Hit the Ground Running!
	Once upon a time, there was a swim coach…
	Fortune decides to smile on you!
	Cubicle Conversation

	Task #1: Extract data from the file’s name
	A string is not really a string…
	Let’s see what happens when Python runs this line of code:

	Let’s get back to that string…
	You’re still on Task #1
	Don’t try to guess what a method does…
	The split method returns a list of words…
	Is it time for another tickmark?
	How to understand Python’s error messages
	Be careful when chaining method calls
	Fixing broken chains
	Strings can do more than just split
	Let’s try another string method
	You’re nearly done with Task #1
	It looks like Task #1 is complete!
	Can you do without the parts list?
	We can think of three reasons!
	Multiple assignment (aka unpacking)
	Task #1 is done!
	Task #2: Process the data in the file
	The Unpacking Crossword
	The Unpacking Crossword Solution


	2. Lists of Numbers: Processing List Data
	Task #2: Process the data in the file
	Grab a copy of the Coach’s data
	The open BIF works with files
	Not much code, but there’s lots happening…
	Variables are created dynamically, as needed
	It’s not that file objects aren’t exciting…
	Work has started on Task #2
	Your new best friend, Python’s colon
	That was almost too easy
	Pause to review this task’s code
	Converting a time string into a time value
	Convert the times to hundredths of seconds
	Swim times to hundredths of seconds

	If you can convert one swim time…
	Python’s favorite looping mechanism: for

	The gloves are off… for loops vs. while loops
	You’re motoring now!
	Let’s keep a copy of the conversions
	Creating a new, empty list
	Displaying a list of your list’s methods
	It’s time to calculate the average
	Convert the average to a swim time string
	It’s been a while since your last tick mark…
	Task #2 (finally) gets over the line!
	The Listers Crossword
	The Listers Crossword Solution


	About the Author

